Variational Learning for Switching State-Space Models
نویسندگان
چکیده
We introduce a new statistical model for time series that iteratively segments data into regimes with approximately linear dynamics and learnsthe parameters of each of these linear regimes. This model combines and generalizes two of the most widely used stochastic time-series models -- hidden Markov models and linear dynamical systems -- and is closely related to models that are widely used in the control and econometrics literatures. It can also be derived by extending the mixture of experts neural network (Jacobs, Jordan, Nowlan, & Hinton, 1991) to its fully dynamical version, in which both expert and gating networks are recurrent. Inferring the posterior probabilities of the hidden states of this model is computationally intractable, and therefore the exact expectation maximization (EM) algorithm cannot be applied. However, we present a variational approximation that maximizes a lower bound on the log-likelihood and makes use of both the forward and backward recursions for hidden Markov models and the Kalman filter recursions for linear dynamical systems. We tested the algorithm on artificial data sets and a natural data set of respiration force from a patient with sleep apnea. The results suggest that variational approximations are a viable method for inference and learning in switching state-space models.
منابع مشابه
Variational inference and learning for segmental switching state space models of hidden speech dynamics
This paper describes novel and powerful variational EM algorithms for the segmental switching state space models used in speech applications, which are capable of capturing key internal (or hidden) dynamics of natural speech production. Hidden dynamic models (HDMs) have recently become a class of promising acoustic models to incorporate crucial speech-specific knowledge and overcome many inhere...
متن کاملVariational Gaussian Process State-Space Models
State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...
متن کاملA Multimodal Variational Approach to Learning and Inference in Switching State Space Models
An important general model for discrete-time signal processing is the switching state space (SSS) model, which generalizes the hidden Markov model and the Gaussian state space model. Inference and parameter estimation in this model are known to be computationally intractable. This paper presents a powerful new approximation to the SSS model. The approximation is based on a variational technique...
متن کاملPropagation Algorithms for Variational Bayesian Learning
Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...
متن کاملDeep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
We introduce Deep Variational Bayes Filters (DVBF), a new method for unsupervised learning and identification of latent Markovian state space models. Leveraging recent advances in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference distributions via variational inference. Thus, it can handle highly nonlinear input data with temporal and spatial dependencies such as im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2000